Adversarial machine learning in Network Intrusion Detection Systems
نویسندگان
چکیده
Adversarial examples are inputs to a machine learning system intentionally crafted by an attacker fool the model into producing incorrect output. These have achieved great deal of success in several domains such as image recognition, speech recognition and spam detection. In this paper, we study nature adversarial problem Network Intrusion Detection Systems (NIDS). We focus on attack perspective, which includes techniques generate capable evading variety models. More specifically, explore use evolutionary computation (particle swarm optimization genetic algorithm) deep (generative networks) tools for example generation. To assess performance these algorithms NIDS, apply them two publicly available data sets, namely NSL-KDD UNSW-NB15, contrast baseline perturbation method: Monte Carlo simulation. The results show that our generation cause high misclassification rates eleven different models, along with voting classifier. Our work highlights vulnerability based NIDS face perturbation. • Machine not robust unconstrained domains. Evolutionary able successful examples. Generative Networks provide rich source fooling intrusion detection systems vulnerable maliciously packets.
منابع مشابه
Machine Learning in Network Intrusion Detection
Network security is of great importance to individuals and organizations. Advanced technologies have been developed to protect both incoming and outgoing traffic, e.g. encryption of sensitive information, firewalls to block risky traffic. However, traditional firewalls and Intrusion Detection System (IDS) identify and block suspicious traffic based on preconfigured rules, traffic signatures as ...
متن کاملMachine Learning in Network Intrusion Detection System
During the last decade, anomaly detection has attracted the attention of many researchers to overcome the weakness of signature-based IDSs in detecting novel attacks, and KDDCUP’99 is the mostly widely used data set for the evaluation of these systems. As network attacks have increased in number and severity over the past few years, intrusion detection system (IDS) is increasingly becoming a cr...
متن کاملMachine Learning for Network Intrusion Detection
Cyber security is an important and growing area of data mining and machine learning applications. We address the problem of distinguishing benign network traffic from malicious network-based attacks. Given a labeled dataset of some 5M network connection traces, we have implemented both supervised (Decision Trees, Random Forests) and unsupervised (Local Outlier Factor) learning algorithms to sol...
متن کاملMachine Learning for Network Intrusion Detection
3 Reviewed Work 2 3.1 Machine Learning in Intrusion Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3.1.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3.1.2 Methods and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3.2 Active Learning for Network Intrusion Detection . . . . . . . ...
متن کاملMachine Learning for Network Intrusion Detection
In recent years, networks have become an increasingly valuable target of malicious attacks due to the increased amount of user data they contain. In defense, Network Intrusion Detection Systems (NIDSs) have been developed to detect and report suspicious activity (i.e. an attack). In this project, we explore unsupervised learning techniques for building NIDs, which only analyze unencrypted packe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Expert Systems With Applications
سال: 2021
ISSN: ['1873-6793', '0957-4174']
DOI: https://doi.org/10.1016/j.eswa.2021.115782